10 Invenções da NASA que você pode usar todos os dias

10 NASA Inventions You Might Use Every Day
Although most people today will never set foot on the moon, it's likely you come into contact with a NASA byproduct every day. Partnering with various research teams and companies, NASA continues to spawn a vast array of new technologies that have improved our daily lives. In fact, NASA has filed more than 6,300 patents with the U.S. government.
Note: In 1958, President Eise­n­hower signed the Space Act, officially creating the National Aeronautics and Space Administration. From the beginning, the purpose for the ne­w branch extended beyond space ships and moon boots. The law stipulated that its research and advancements should benefit all people, and in its 50-year history, NASA has certainly fulfilled that role.
But it doesn't take a rocket scientist to use many of these so-called spinoffs.
NASA research extends beyond space flight into our everyday lives.

10. Invisible Braces

Even celebs have teeth problems. See actor Tom Cruise's invisible ceramic braces.
Many t­eenagers cringe at the prospect of braces. Getting one's teeth in order used to mean enduring a mouth full of metal, but not so anymore. Invisible braces hit the market in 1987, and now there are multiple brands.

Invisible braces are made of translucent polycrystalline alumina (TPA). A company called Ceradyne developed TPA in conjunction with NASA Advanced Ceramics Research to protect the infrared antennae of heat-seeking missile trackers.

In the meantime, another company, Unitek, was working on a new design for dental braces -- a design that would be more aesthetically pleasing and would not have the shiny metallic factor. It discovered that TPA would be strong enough to withstand use and is translucent, making it a prime material for invisible braces. Because of their instant popularity, invisible braces are one of the most successful products in the orthodontic industry. 

9. Scratch-resistant Lenses

If you­ drop a pair of eyeglasses on the ground, the lenses probably won't break. That's because in 1972, the Food and Drug Administration began requiring manufacturers to use plastic rather than glass to make lenses. Plastics are cheaper to use, better at absorbing ultraviolet radiation, lighter and not prone to shattering. Nevertheless, they also had an Achilles heel. Uncoated plastics tend to scratch easily, and scuffed lenses could impair someone's sight.

Because of dirt and particles found in space environments, NASA needed a special coating to protect space equipment, particularly astronaut helmet visors. Recognizing an opportunity, the Foster-Grant sunglasses manufacturer licensed the NASA technology for its products. The special plastics coating made its sunglasses ten times more scratch-resistant than uncoated plastics.

8. Memory Foam

NASA ­helps some people sleep better at night. Temper foam found in Tempurpedic brand mattresses and similar brands was originally developed for space flight and later repackaged for the home.

The open cell polyurethane-silicon plastic was created for use in NASA aircraft seats to lessen impact during landings. The plastic has a unique property that allows it to evenly distribute the weight and pressure on top of it, which provides shock absorbency. Even after being compressed to 10 percent of its size, the memory foam will return to its original shape. Some private and commercial planes now feature the foam in seats as well.

But the uses of the plastic foam extend beyond the skies. Its weight distribution and temperature sensitivity play important roles for severely disabled or bedridden people. Doctors can customize the foam to support patients while reducing the pressure on certain parts of the body to ward off bedsores, for instance. Some companies also have integrated temper foam into prosthetic limbs because it has the same look and feel of skin and decreases the friction between the prosthetic and joints.

Other commercial uses include padding for motorcycle seats, custom body molds for dressmaking and protection for racecar drivers.

7. Ear Thermometer

Taking y­our temperature when sick can be tricky business. A standard mercury thermometer can prove difficult to read, and a rectal one is just plain uncomfortable. In 1991, infrared thermometers that you place into your ears took the work out of it, simplifying and speeding up the process.

Diatek, which developed the first of these kinds of thermometers, saw a need to reduce the amount of time nurses spend taking temperatures. With around one billion temperature readings taken in hospitals in the United States each year and a shortage of nurses, the company set out to shave off the precious minutes otherwise required to watch mercury rise. Instead, Diatek took advantage of NASA's previous advancements in measuring the temperature of stars with infrared technology.

Together with NASA's Jet Propulsion Lab, the company invented an infrared sensor that serves as the thermometer. Aural thermometers with these infrared sensors take your temperature by measuring the amount of energy your eardrum gives off into the ear canal. Since the eardrum is inside our bodies, it acts as an accurate sensor for the energy, or heat, inside of our bodies that increases when we get sick. Hospital models can perform a temperature reading in less than two seconds.

6. Shoe Insoles
KangaROOS
Wh­en Neil Armstrong famously spoke of "one giant leap for mankind," he probably didn't foresee the literal connotation it would come to have. Today's athletic shoes have borrowed the technology of the moon boots that first took that leap.

The space suit designed for the Apollo missions included specially-made boots that put a spring in astronaut's steps while providing ventilation. Athletic shoe companies have taken this technology and adopted it to construct better shoes that lessen the impact on your feet and legs.

For instance, in the mid-1980s, shoe company KangaROOS USA applied the principles and materials in moon boots to a new line of athletic shoes. With help from NASA, KangaROOS patented a Dynacoil three-dimensional polyurethane foam fabric that distributes the force on your feet that happens when you walk or run. By coiling the fibers within the fabric, the KangaROOS absorb the energy from your foot hitting the ground, rebounding it back to your feet.

Another shoe manufacturer, AVIA, also converted moon boot technology to use in athletic shoes. The patented AVIA compression chamber provided shock absorption and spring in the shoes for longer periods of use.

5. Long-distance Telecommunications

The ability to carry on long-distance telephone conversations did ­not happen overnight. It doesn't link back to one specific NASA invention -- improved telecommunication took place over decades of work.

Before humans were sent into space, NASA built satellites that could communicate with people on the ground about what outer space was like. Using similar satellite technology, around 200 communication satellites orbit the globe each day. These satellites send and receive messages that allow us to call our friends in Beijing when we're in Boston. NASA monitors the locations and health of many of these satellites to ensure that we can continue to talk to people around the corner or overseas.

4. Adjustable Smoke Detector

Where there's smoke, there's fire. NASA engineers knew that simple fact when they were designing Skylab in the 1970s. Skylab was the first U.S. space station, and the astronauts would need to know if a fire had started or if noxious gases were loose in the vehicle. Teaming up with Honeywell Corporation, NASA invented the first adjustable smoke detector with different sensitivity levels to prevent false alarms.

You can read about smoke detectors in more detail in How Smoke Detectors Work, but the first one to hit the consumer market is called the ionization smoke detector. That essentially means that it uses a radioactive element called americium-241 to spot smoke or harmful gasses. When clean air particles of oxygen and nitrogen move through smoke detectors, the americium-241 ionizes them, which creates an electrical current. If foreign smoke particles enter the smoke detector, it disrupts that interaction, triggering the alarm.

3. Safety Grooving

Carving a gro­ove into concrete may not sound like much of an innovation, but it certainly keeps us safe on the roads. Also called safety grooving, this simple, yet lifesaving, process inserts long, shallow channels into pavement on runways and roads. These indentions in the concrete divert excess water from the surface to reduce the amount of water between tires and the runway or road. This increases the friction between wheels and concrete, improving vehicle safety.

Safety grooving was first experimented with at NASA's Langely Research Center in the 1960s as a way to improve safety for aircraft taking off on wet runways. Once people realized how well it worked, transportation engineers began applying the same techniques to highways. According to NASA, safety grooving has reduced highway accidents by 85 percent. Cars hydroplane when water between tires and the road actually separates the two from each other.

You can find other examples of safety grooving at pedestrian crosswalks, around swimming pools and in animal pens. This innovation has generated an entire industry, represented by the International Grooving & Grinding Association.

2. Cordless Tools

When you're sucking up bits of dirt or crumbs around the house with a handheld cordless vacuum, you are actually using the same technology that astronauts used on the moon. Although Black & Decker had already invented the first battery-powered tools in 1961, the NASA-related research helped refine the technology that led to lightweight, cordless medical instruments, hand-held vacuum cleaners and other tools.

In the mid-1960s, to prepare for the Apollo missions to the moon, NASA needed a tool that astronauts could use to obtain samples of rocks and soil. The drill had to be lightweight, compact and powerful enough to dig deep into the surface of the moon. Since rigging up a cord to a drill in outer space would be a difficult feat, NASA and Black & Decker invented a battery-powered, magnet-motor drill. Working in the context of a limited space environment, Black & Decker developed a computer program for the tool that reduced the amount of power expended during use to maximize battery life.

After the NASA project, Black & Decker applied the same principles to make other lightweight, battery-powered tools for everyday consumers.

1. Water Filters

Water is the essential ingredient to human survival. Since people cannot live without wate­r, the ability to convert contaminated water to pure water is an incredibly important scientific achievement.

Astronauts needed a way to cleanse water they take up into space, since bacteria and sickness would be highly problematic. Water filter technology had existed since the early 1950s, but NASA wanted to know how to clean water in more extreme situations and keep it clean for longer periods of time.

If you look at a water filter, you can usually detect small chunks of charcoal inside of them. Sometimes, when you first use a water filter, you'll even notice tiny black flecks from those chunks. This charcoal is specially activated and contains silver ions that neutralize pathogens in the water. Along with killing bacteria in the water, the filters also prevent further bacterial growth. Companies have borrowed from this same technology to bring us the water filter systems millions of people use at home every day.

Source: dsc.discovery.com

LinkWithin

Related Posts Plugin for WordPress, Blogger...